J ul 2 00 8 TWO HOPF ALGEBRAS OF TREES INTERACTING
نویسنده
چکیده
— Hopf algebra structures on rooted trees are by now a well-studied object, especially in the context of combinatorics. They are essentially characterized by the coproduct map. In this work we define yet another Hopf algebra H by introducing a new coproduct on a (commutative) algebra of rooted forests, considering each tree of the forest (which must contain at least one edge) as a Feyman-like graph without loops. The primitive part of the graded dual is endowed with a pre-Lie product defined in terms of insertion of a tree inside another. We establish a surprising link between the Hopf algebra H obtained this way and the well-known Connes–Kreimer Hopf algebra of rooted trees HCK by means of a natural H-bicomodule structure on HCK. This enables us to recover results in the field of numerical methods for differential equations due to Chartier, Hairer and Vilmart [9, 10] as well as Murua [26]. Résumé. — Les algèbres de Hopf d’arbres apparaissent fréquemment en combinatoire, en général caractérisées par leur coproduit. Nous en définissons encore une autre en introduisant un coproduit sur une algèbre (commutative) de forêts d’arbres enracinés, en considérant chaque arbre (qui doit contenir au moins une arête) comme un graphe de Feynman sans boucles. L’algèbre de Lie des éléments primitifs du dual gradué est munie d’une structure pré-Lie qui s’exprime en termes d’insertion d’un arbre dans un autre. L’algèbre de Hopf H obtenue de cette manière co-agit à gauche et à droite sur l’algèbre de Hopf de Connes–Kreimer HCK. L’exploration des liens entre les deux algèbres de Hopf permet de retrouver des résultats démontrés par Chartier, Hairer et Vilmart [9, 10] et Murua [26] dans un contexte d’analyse numérique.
منابع مشابه
6 J un 2 00 8 FEYNMAN GRAPHS , ROOTED TREES , AND RINGEL - HALL ALGEBRAS
We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...
متن کاملJ ul 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...
متن کاملA ] 1 3 O ct 2 00 5 COHERENT UNIT ACTIONS ON REGULAR OPERADS AND HOPF ALGEBRAS
Abstract. J.-L. Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and planar rooted trees. We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the genera...
متن کاملar X iv : m at h / 04 10 15 0 v 8 [ m at h . Q A ] 1 5 A ug 2 00 5 CLASSIFICATION OF PM QUIVER HOPF ALGEBRAS
We give the classification of (co-)path Hopf algebras and semi-path Hopf algebras with pointed module structures. This leads to the classification of multiple crown algebras and multiple Taft algebras as well as pointed Yetter-Drinfeld kG-modules and their corresponding Nichols algebras. Moreover, we characterize quantum enveloping algebras in terms of semi-path Hopf algebras.
متن کاملar X iv : m at h / 04 10 15 0 v 5 [ m at h . Q A ] 1 8 Ju l 2 00 5 CLASSIFICATION OF PM QUIVER HOPF ALGEBRAS
We give the classification of (co-)path Hopf algebras and semi-path Hopf algebras with pointed module structures. This leads to the classification of multiple crown algebras and multiple Taft algebras as well as pointed Yetter-Drinfeld kG-modules and the corresponding Nichols algebras. Moreover, we characterize quantum enveloping algebras in terms of semi-path Hopf algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008